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SHOCK WAVES IN POLYDISPERSE BUBBLY MEDIA WITH 

DISSIPATION 

S. L. Gavrilyuk and S. A. Fil'ko UDC 532.529.5 

The shock wave structure in a bubbly liquid with a discrete bubble size distribution 
function (at each point in space there are bubbles of M different radii) is investigated. In 
the coordinate system moving with the wave the equations of motion reduce to a dynamical sys- 
tem in 2M-dimensional phase space. For an arbitrary finite M the existence, uniqueness and 
stability of the corresponding structure are proved. Stability is understood in the sense 
of satisfaction of the Cemplen theorem at the shock wave, treated within the framework of the 
equilibrium model as a strong discontinuity. 

i. Mathematical Model 

For low bubble concentrations the equations of motion of a polydisperse bubbly medium 
with a incompressible carrier phase have the form [i, 2]: 

v t -- ue = 0; 

u~ + Pe = O; 

R~R~tt + 3R~ff2 = (p~ (R 0 - -  p)/pz --  4~t,R~t/(p~B~); 

e ~  = O, n ~ = O ,  i = t  . . . . .  M .  

(l.l) 

(1.2) 

(1.3) 

(l.4) 

Here, t is time, q is the mass Lagrangian coordinate, u is velocity, v is the specific vol- 
ume of the mixture, p is the pressure in the liquid, R i are the radii of the bubbles, i de- 
notes the corresponding bubble fraction (kind), p~(R i) is the pressure in a bubble of the 
i-th kind, ps is the density of the liquid (constant), Bi are the effective dynamic viscosity 
coefficients [3, Part i, pp. 125, 126], c2i are the mass bubble concentrations, and n i is 
the number of bubbles per unit mass of mixture. As shown in [3], in liquids with vicosities 
of the same order as the viscosity of water the damping of fairly large bubbles is mainly 
determined by thermal dissipation. Since the heat transfer from the bubble to the liquid is 
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porportional to the interface area, generally speaking, Di # Pj, i ~ j. 
volume of the mixture can be expressed as 

The specific 

v=cdp~+ 4z~ mR 3,0~+~0~=1 (1.5) 

(cs is the mass concentration of the liquid). The equation of state of the i-th phase is 

taken in the form: 

p~ (R0 = p0 (R~0/R~) ~ 
(1.6) 

(P0 and Rio a r e  t h e  e q u i l i b r i u m  v a l u e s  o f  t h e  p r e s s u r e  and t h e  b u b b l e  r a d i i ,  X > 1 i s  t h e  

p o l y t r o p i c  e x p o n e n t ,  common t o  a l l  t h e  b u b b l e s ) .  We w i l l  a s sume  t h a t  c= i  = c o n s t ,  n i = c o n s t .  

We s e e k  s o l u t i o n s  o f  t h e  s y s t e m  ( 1 . 1 ) - ( 1 . 6 )  t h a t  depend  o n l y  on t h e  v a r i a b l e  ~ = q - Dt 
(D i s  t h e  v e l o c i t y  o f  t h e  t r a v e l i n g  w a v e ) .  The e q u a t i o n s  f o r  t h e  r a d i i  R i a r e  w r i t t e n  a s  
f o l l o w s :  

V ~ ( R ~ R ~ + 3 R ; % ) =  Po(R~o/R~)~'--po+V ~ ~ E  ~ ( ~ - - R ~ o )  R~ ~ + ( 1  7) 
i = 1  11 

r + 4~qDRJ(pzBO. 

We introduce the dimensionless variables x i = Ri/Ri0 , T = ~/q0, where q0 > 0 is a character- 

istic Lagrangian variable, and the notation 

2 2 2 a~ = (pzD B~o)/(poqo), ~i = (4.iD)/(Poqo), 6~ = (4z~D2niB~o)/(3po), ( 1 . 8 )  

denoting by a dot the derivative with respect to T. Then (1.7) takes the form: 

M 

( "" 3.~,~/ ) -3 ,  I + ~] 6~(x~--  t )  + ~ixdx,, i 1, M. ( 1 . 9 )  ai x~z~ + __..2 = xi . . . . . .  
.J=l  

Without loss of generality, we may assume that D > 0, since otherwise it is sufficient to 
make the substitution �9 ~ --r. Thus, ~i > 0. 

By the solution of the system (1.9) we understand the vector function Z = (Xl ..... x~, 

xl .... , xm) ER 2~, xi>0 itobedefinite and continuously differentiable for all ~ eR and satisfy- 
! 

ing the boundary conditions 

l ~  z = (z~ . . . . .  x~, o . . . . .  o) = z• 

The system (1.9) has the trivial solution Z ~ = (i, ..., i, 0, ..., 0). The problem is to 
find a nontrivial bounded solution. The case M < 2 was fully investigated in [4]. 

2. Transition to Canonical Variables 

If the viscosity coefficients ~i = 0 (~i = 0), then the system (1.9) will be Hamiltonian 
[5]. We now go over to canonial variables. Following [4], we consider the function 

~ ( ~ , x )  = Z 6 ~  + ( ~ - ~ )  + ~x~x~ 

- 2 ~ ( x ~ -  t )  x = ( x . .  , x~).  
2 ~ ~ ~ 

5 = t  

(2.1) 

We introduce the notation 

x5 xS, q s ~  x j  �9 ( 2 . 2 )  

6 7 0  



Then (2.1) can be represented in the form (with the tilde removed from H): 

M 

i 
H (q, p) = y Z P~ § V (q), 

i = l  

where the potential 

V ( q ) = Y ( x ( q ) ) ~ S j  +xj-1 ---2- 6j(x~-1 , 

( 2 . 3 )  

(2.4) 

and xj(qj) are determined from (2.2). 

Lemma 2.1 [4]. The system of equations (1.9) is equivalent to the following systems: 

ql ---- OHlOpi, Pi = -- OHlOqi + Fi, Fi = ~ Pi 
~i ( 5q~ /4/5 ' i  = 1 2  V-~--~d . . . . .  M. (2.5) 

It follows from Lemma 2.1 that the derivative of the function H along trajectories of the 
system (2.5) is nonnegative. This means that a nonconstant bounded solution of the system 
(2.5), if it exists, must begin and end at singular points. 

3. Singular Points and Stability of Traveling Waves 
o 

In order to find the singular points we will use the coordinates x, x the system of 
algebraic equations has the form 

(3.1) 
x r  - i + E (4 - i )  = o.  j=l 

We take 

M 

8 = ~ 8i. (3.2) 
j=] t  

From (3.1) it follows [4] that when 6 = u there is only one singular point: xi0 = x0 = i, 

when 8 > u there are two: xi0 = x0 = i, x~ = x.~ < 1 and when 6 < u there are also two: 

xi0 = x 0 = i, x~ = x* > i, i = 1 .... , M. 
l 

Thus, when 8 = u there are known to be no nonconstant bounded solutions~ The cases 
6 < u and 8 > ~ need further investigation. We introduce the notation: z 0 = (xl0, o.., 

XM0) = ( 1  . . . . .  1 ) ,  z ,  = ( x ~ ,  . . . .  , XM,) = ( x ,  . . . .  , x ~ ) ,  z*  = ( x ?  . . . . .  x ~ )  = ( x * ,  . . . .  x ~ ) .  

Lemma 3.1 [4]. If 8 > u then V(z,) < 0 = V(!z0). If 8 < u then V(Z*) > 0 = ~(,z~). 

Since H increases along the trajectories of the system (2.5), it follows from Lemma 3.1 
that if x(z) is a nonconstant bounded solution of equations (1.9), then 

z, ----- lira x (~), z 0 = lim x (~) when 5 > ?, 
T-->--oo T-->oo 

z o ---- lim x (~), z* = lira x (~) when ~ ~ V" 
'[-->--gO T'>gO 

Since D > 0, the inequality 8 > u corresponds to the state with a zero index being the state 
ahead of the wave front, while when 6 < y it is the state behind the front. The physical 
significance of the inequalities 6 > y and 8 < u will become clear from the following 
assertion. 

Lemma 3.2 [4]. The following chains of equivalent inequalities hold: 

8 > V ~ a~ (vo) < v~D 2 .r 2 < a~ (v,) ~ 6 < Vx: ~(~+1), 

< v ~ a~ (~o) > v~D~ ~ (~*)~ D~ > a~ (~*)  ~ ~ > V (x*) - ~ + ' .  
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Here, a e is the equilibrium speed of sound in the mixture: 

M ? ( v 

t 7 a~ (v) = dpe (v) ' v---- Tz~- [ " ' d"'('ilv); p~ (v) = Po i=1 �9 

v0, v,, and v* are the values of the specific volume at the corresponding singular points. 
Thus, Lemma 3.2 is, essentially, the Cemplen theorem for the equilibrium model of a bubbly 
medium. If the corresponding structure (solution of traveling wave type) exists, then with- 
in the framework of the equilibrium model it corresponds to a stable strong discontinuity. 

We will investigate only the case 5 > ~ (x0 is the state ahead of the wave front), 
since the inequality 6 < 7 can be reduced to 5 > ~ by renotation. In fact, for that it is 
sufficient when ~ < y to rewrite Eqso (1.7) in the form: 

D 2 (B iR~  + 3R~2/2) ----- (Po (RiolBi) 3~ - -  P* + 
M 

+ - + 4  DRd(p RO; p *  = = x*R o. 
i = l  

If we introduce the dimensionless variables x i = Ri/R ~, m = g/q0 and note that p* = 

p0(Ri0]R~)aY, then the corresponding equations will have the form of (1.9) with ~i, 6i, Bi 
M 

* i >?. replaced by a~, 6~,, ~. In this case the inequality 5 < 5' goes over into 6 * =  ~ 6" 
i=l 

Thus, everywhere in what follows only the case 6 > y will be considered. 

. Linearization in the Neighborhood of the Singular Points 

Let A + and A- be the linearization matrices of the system (2.5) in the neighborhoods of 

the points (iq0. 0 ), A- and ( q,, 0 ), where qo and q,, which correspond to the points z 0 = 

(I .... , i) and z, = (x, .... , x,), are recalculated from (2.2). 

Lemma 4.1 [4]. We introduce the notation 

/OIEN 
A(* )  = ts-T  ) , 

where 0 and E are null and unit M • M matrices, T = Itij IM• and B = 

i :/= ], 

IibijHMxM: 

= J I/ aiccJ 

a i O, i=/=]. 

(4.1) 

(4.2) 

Then A + = A(1), A- = A(x,). 

In [4] the properties of the spectrum A(x) were investigated only for M < 2. We will 
carry out a general analysis. Considering the equation A(x)<w> = lw (w~R~Mis a 2M- 
dimensional vector), we divide W into two M-dimensional vectors: ~.=(w', w"),. By virtue 
of the representation of the matrix A(x) we have w n~= %w', T<w'> +(B --~<w"> = 0, from 
which there follows the equation for the eigenvalues of the matrix A(x) 

d e t ( T + ~ B - - ~ E )  = 0 .  (4.3) 

We introduce the matrices DI, D2, W M in accordance with the following rule: 
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f ~  , 
DI = [l dlii [I~• dl~j = 3x V ~ -  [ ij D2 = [I d2ii IIM• d2ii = 

WM = I1 wMr I!M• w~ij = (ai (~), i = j; 

~(~) = ~ ~ ~ + - . 

(4.4) 

From (4.1), (4.2), and (4.4) it follows that T + %B - X2E = DIWMD 2, 

lent to A M -= det W M = O. 

Lemma 4.2. Let M > 2. Then 

M M M 

k#j 

i.e., Eq. (4.3) is equiva- 

Proof. The case M = 2 is obvious. Let the equation be correct for M - i. 
the determinant of the matrix W M with respect to the M-th column. Then 

M--I 

A~ = aMAM--1-- ~ A ~ - I .  

We expand 

(4.s)  

Here, AM_ ~ is the determinant of the matrix WM_z, 

organized in the same way as WM_I, except that its j-th row consists entirely of units. 

inductive assumption 

M--1 M - - I  M--1 M--I 

~=1 J = l  k = l  fr 
h~j h~j 

and A~_ l that of the matrix W~_l, which is 

By 

( 4 . 6 )  

The substitution of (4.6) 

Remark. If we set a 0 

in (4.5) proves the lemma. 

= 2 and 

M M M 

i=I j=l i=0 

then the expression for A M will also be correct when M = i. 

We will show that the equation AM(X) = 0 does not have purely imaginary roots. We 
J 

assume the o p p o s i t e ,  i . e . ,  X = i b ,  b ~ 1~ i s  a r o o t .  S i n c e  a k ( i b )  - 1 ~ 0 f o r  a l l  b ~  R,  t h e  
M 

equation AM(X) = 0 is equivalent to ~_~ (aj(ib)--l)-l+ I =0. From this there follow the two 
9=I 

M 

e q u a t i o n s :  b = 0 and  5 ~ ~ 8j = ?x -3v-~. S i n c e  8 > ~ +-* 8 < ~ x . - a u  - a ~  (Lerama 3 . 2 ) ,  t h e  e q u a -  

tion AM(X) = 0 does not have roots on the imaginary axis. 

We note that aj(X) - i # 0 when X ! 0. Then when X i 0 the equation AM(X) = 0 is 

equivalent to 

S~ (z) =- 1 + E (aj (x) - I ) - '  
j = l  

=0. 
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By virtue of (4.4) when h i 0 we find 

z~ d~. M (~,) 
AM(0)=I--6x3V+31?, 6= ~3i, dX <0, lira AM(%)=I. (4.71 

It follows from (4.7) that when x = i, h < 0 the equation AM(h) = 0 has a single root ho < 0, 

and when x = x,, h < 0 there are no roots. Since AM(X) is a polynomial with real coeffi- 

cients of even degree, when x = i, h > 0 it can be stated that the equation AM(X) = 0 has at 
least one positive root. 

We will show that the matrices A + and A- (see Lemma 4.1) have respectively 2M - i and 

2M eigenvalues in the right half-plane for all values of a i, ~i, 6i > 0. For this it is 

sufficient to find just a certain interval of the variables a i, ~i, 6i on which that is so. 

In fact, the root of the algebraic equation depend continuously on its coefficients and there- 
fore they can enter the left half-plane only by crossing the imaginary axis from the right. 
However, as already shown, there are no purely imaginary roots. 

Below, we will confine ourselves to the case of the matrix A + (A- can be similarly in- 
vestigated). We assume that a k ~ aj, ~k ~ S j, k # j, since otherwise all the bubbles are of 

the same kind. We choose ~ < 127a k, k = i, ..., M. Then aj(h) ~ i for any j = i ..... M. 

Therefore the equation AM(X) = 0 is again equivalent to AM(h) = 0. The latter may convenient- 

ly be written in the form: 
M 

~, ]k(%)= t, ]~.(%) = --(ak(%)-- l)-:,  (4 .8)  

s > O,,h~n ~ ~ R, s --+ 0 when ~,--+ -+oo. 

There exists a single maximum of the function fk(h): 

~ = ~U(2~k), ]~ (X~) = 128kaJ(12~ah-- F~). 

We choose 6z > h. Then fl(h~) 

one positive root. Moreover, 

that for any k = 2 .... , M 

> i, f1(0) > i. Therefore the equation f1(h) = i has exactly 

let 6k << 7, k = 2 ..... M. It is possible to choose Sk so 

3 (? - -  6h)la~ < ~ "  < 3~,,la~. 

From this it follows that fk(k~) > I, k = 2, ..., M. Finally, if we take the ~k (k = 2 .... , 

M) such that al << a2 <<...<< aM, then h~ << h~ << ... << h A and, consequently, the roots of 

Eq. (4.8) will be similar to the roots of the equations fk(h) = i (k = i, ..., M), each of 

which, except for fl(h) = i, has exactly two positive roots. The case x = x, can be similarly 
investigated. Thus, we have proved: 

Lemma 4.3. For any positive a i, ~i, 7i and 6 > 7 (see (1.8), (3.2)) the matrix A + has 

one negative eigenvalue and 2M - I eigenvalues in the right half-plane, and A- has 2M eigen- 
values in the right half-plane. 

5. Level Surface of Hamiltonian. Uniqueness Theorem. In what follows we will need to 
know the structure of the level set of the Hamiltonian H(q, p), i.e., the set H c = {(q, p)[ 
H(~, p) = c} (c is a constant). The first step is to find the critical points of the Hamil- 
tonian~ which coincide with the singular points of the system (2.5). In view of (2.3) it is 
sufficient to investigate the potential V(q) whose second-derivative matrix coincides at the 
singular points with -T (Lem~na 4.1). By analogy with (4.3), the equation det(-T - hE) = 0 is 

equivalent to det G = 0, where G = llgijllM• 

8 i - -  ~ x - - 3 v - a  a i 

t 1, ~--/= ]. 
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By virtue of Lemma 4.2, the eigenvalues of the matrix -T are roots of the polynomial 

M M M 

I I  (g. - I) + Z II (g. - I) = o. 
i = l  / = 1  i=1 

(5.1) 

Since T is a symmetric matrix, all the roots of (5.1) are real. The inequality ~ > y guaran- 
tees that when x = 1 Eq. (5.1) has only one negative root, and when X = x, there are no nega- 

tive roots. All the other roots are positive. 

Let V 0 and V, be the values of the potential V(q) at the points q0 and q. respectively. 

By virtue of Lemma 3.1 V 0 = 0, V~ < 0. Let us consider a fairly small neighborhood U, of the 

point ( q,, O) in R TM. In view of the properties of the potential V(q) and Morse's lemma [6, 

p. 402] there exist regular local coordinates q' such that in U, 

i 2 . H (q', p) - V,  + y p~ + q~ 
\ i = l  i = l  ] 

Therefore the set H c = {( q, p)lH(q, p ) = c} with (!q, p) ~U, (c ~ (V,, V, + e), 0 < ~- << i) 

is diffeomorphic to a sphere S 2M-~. Since the interval (V,, V0)does not contain a critical 

level of the function H, for all c ~ (V,, V 0) H c has a connectivity component diffeomorphic 

to S 2M-l. When c = 0 is crossed, the structure of H c changes. In fact, by virtue of Morsets 

lemma in the neighborhood U 0 of the point ( q0, 0 ) there exist regular local coordinates q" 
such that 

From this it follows that the set H 0 is locally a cone. In U 0 the surface H_s (0 < E << !) 

has two connectivity components and is diffeomorphic to S o x E2M-Im where E 2M-l is a 2M - l- 

dimensional cell (topological image of a 2M - 1-dimensional disk); the surface H C is connected 

and diffeomorphic in U 0 to E l x S =M-2. One of the cells E 2M-l corresDonds to the intersection 

of the neighborhood U 0 and the connectivity component of the set H_e diffeomorphic to S 2M-I, 

while the second corresponds to the intersection of U 0 and the noncompact connectivity compo- 

nent of the set H_ E. 

We introduce the notation H- = {(g, ~)IH(q, p) < 0}~ From the above analysis it follows 
that H- is not connected: 

H- =~7 O H-, H: 0 7/- = ~. (5.2) 

Here, the set H,- is homeomorphic to an open 2M-dimensional cell and contains the point (q,, 

0), while H- is a noncompact set. This makes it possible to prove the uniqueness theorem: 

THEOREM 5.1. If a solution of the system (2.5) connecting the points (%, 0 ) and ~., 0)i 

exists, then it is unique. 

Proof. Byvirtue of Lemma 4.3 and the Grobman-Hartman theorem, exactly two trajectories 

of the system (2.5) arrive at the point (q0, 0). Let X 0- be a negative eigenvalue of the 

matrix A + (Lemma 4.1), and let r be the corresponding eigenvector. It can be directly veri- 
fied that 

(r, 02H/Ox2(q o, 0)(r )) < 0. ( 5 . 3 )  
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Inequality (5.3) implies that these trajectories lie locally in different connectivity compo- 
nents of the set H-. We will show that only one of them can begin at the point ( q~ 0). Let 
s be a trajectory of the system (2.5) connecting the points ( ~,, 0) and ( q0, 0). We will 
show that it always lies within H,- (see (5.2)). In fact, if the opposite were true, there 
would be a moment of time T, < ~ at which s crosses the boundary of the set H,-. Since H 
increases along the trajectories of the system (2.5), when ~ > T* s must lie outside H-. 
Consequently, it does not meet (iq0,0~). Thus, s belongs to H,-. Uniqueness is proven. 

6. Existence Theorem 

Let us consider the system 

x = f ( x ) , x ~ R  n , f : R  n-+R ~,(') =d/dt. (6.1) 

We denote by x~t a point on a trajectory of the system (6.1) at the moment t such that x'0 = 
x. Systems of the type (6.1) are associated with the well known concept of an invariant set 
[7]. THe following definitions and properties [7-9] are given in order to close the exposi- 
tion. 

The set I is called an isolated invariant set if I is a maximal invariant set in some 
neighborhood of itself. The compact set N is called an isolated neighborhood of the maximal 
invariant set I contained in N, if I lies strictly within N. The isolating neighborhood B is 
called an isolating block, if its boundary 8B can be represented in the form 8B = b + U b- U ~, 
where b+(b -) is the set of exit (entrance) points (the trajectories leave (enter) B as time 
increases), and �9 consists of segments of trajectories of the system (6.1) connecting b + and 
b-. 

We will call B/b + the quotient space obtained as a result of the contraction of b + into 
a point (pointed set [6]). The class of homotopically equivalent quotient spaces B/b + is 
called the Conley index of the isolated invariant set I. We will assume that h(1) = [B/b +] 
(the square brackets denote homotopytype). In [8, 9] it was shown that h(1) does not depend 
on the choice of isolating block. The indices can be added. If 11 and 12 are nonintersect- 
ing isolated invariant sets, then h(ll U 12 ) = h(l I) V h(l 2) (V denotes the bouquet of corres- 
pondin~ pointed spaces [6]). The Conley index is "nonnegative," i.e., if h(l I) V h(l 2) = 0, 
where 0 is the homoto~y type of the contracted space (homotopically equivalent to a point), 
then h(ll) = h(l 2) = 0. 

Example [8, 9]. Let x 0 be a rest point of (6.1), and A 0 the linearization matrix of 
(6.1) at the point x0, which does not have eigenvalues on the imaginary axis. Then x0 is 
an isolated invariant set, and h(x0) = zk is a pointed sphere of dimensionality k (k is the 
number of eigenvalues of A0 lying in the right half-plane). 

By virtue of Lemma 4.3 h({q0, 0})= E 2M-I, h({q,,0})=E TM. 

THEOREM 6.l. There exists a trajectory of the system (2.5) connecting the rest points 

(q,,0)' ~ and (q0, 0). 

Proof. We will construct the isolating block B. Let r be an eigenvector of the matrix 
A + corresponding to a negative eigenvalue, In the small neighborhood U 0 of the point (q0, 0) 
we will consider a family A of hyperplanes orthogonal to r such that the points (q,,0) and 
(q0, ~) ~lie on the same side of A. We fix 0 < e << i. We select the hyperplane L e A inter- 
secting H_ E n ~- in U 0 in a set homeomorphic to S =M-2. Such an L exists by virtue of the 
properties of the surface H_e (see Sec. 5). By virtue of (5.3) the part of the hypersurface 
H_ E n ~- located with the singular points on the same side of L, which is a 2M - 1-dimensional 
cell, will be the entrance set b-. We release from points on the boundary of the set b- the 
trajectories of the system (2.5) that form the set T in the definition of the block B and 
intersect H e in a set of homeomorphic to S aM-2 The sphere S 2M-2 divides H e into two non- 
intersecting parts: H e = H,e U ~e, where H,~ is homeomorphic to the hemisphere S 2M-I, and 
R E is the noncompact part. Here H,E is the set of exit points b +. The block B has been 

constructed. By virtue of the fact that b + is simply connected the quotient space B/b + is a 
2M-dimensional cell. Consequently, the homotopy type [B/b +] = O. 

On the other hand, if no trajectory connecting the points (q,,0) and (q0,0) ~ exists, 
then the only invariant sets of the system (2.5) are the rest points themselves. Consequent- 
ly, using the Conley index summation rule, we have E 2M-I V z2M = ~, which contradicts the 
"nonnegativity" of the index. QED. 
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